Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > YAO'S XOR-LEMMA:
Reports tagged with Yao's XOR-lemma:
TR01-009 | 5th January 2001
Ronen Shaltiel

Towards proving strong direct product theorems

A fundamental question of complexity theory is the direct product
question. Namely weather the assumption that a function $f$ is hard on
average for some computational class (meaning that every algorithm from
the class has small advantage over random guessing when computing $f$)
entails that computing $f$ on ... more >>>


TR20-094 | 24th June 2020
Ronen Shaltiel

Is it possible to improve Yao’s XOR lemma using reductions that exploit the efficiency of their oracle?

Yao's XOR lemma states that for every function $f:\set{0,1}^k \ar \set{0,1}$, if $f$ has hardness $2/3$ for $P/poly$ (meaning that for every circuit $C$ in $P/poly$, $\Pr[C(X)=f(X)] \le 2/3$ on a uniform input $X$), then the task of computing $f(X_1) \oplus \ldots \oplus f(X_t)$ for sufficiently large $t$ has hardness ... more >>>




ISSN 1433-8092 | Imprint