We define number-theoretic error-correcting codes based on algebraic
number fields, thereby providing a generalization of Chinese Remainder
Codes akin to the generalization of Reed-Solomon codes to
Algebraic-geometric codes. Our construction is very similar to
(and in fact less general than) the one given by (Lenstra 1986), but
the ...
more >>>
Folded Reed-Solomon codes are an explicit family of codes that achieve the optimal trade-off between rate and list error-correction capability. Specifically, for any $\epsilon > 0$, Guruswami and Rudra presented an $n^{O(1/\epsilon)}$ time algorithm to list decode appropriate folded RS codes of rate $R$ from a fraction $1-R-\epsilon$ of ... more >>>
We give a length-efficient puncturing of Reed-Muller codes which preserves its distance properties. Formally, for the Reed-Muller code encoding $n$-variate degree-$d$ polynomials over ${\mathbb F}_q$ with $q \ge \Omega(d/\delta)$, we present an explicit (multi)-set $S \subseteq {\mathbb F}_q^n$ of size $N=\mathrm{poly}(n^d/\delta)$ such that every nonzero polynomial vanishes on at most ... more >>>
In recent years the explosion in the volumes of data being stored online has resulted in distributed storage systems transitioning to erasure coding based schemes. Local Reconstruction Codes (LRCs) have emerged as the codes of choice for these applications. An $(n,r,h,a,q)$-LRC is a $q$-ary code, where encoding is as a ... more >>>
Reed-Solomon codes are a classic family of error-correcting codes consisting of evaluations of low-degree polynomials over a finite field on some sequence of distinct field elements. They are widely known for their optimal unique-decoding capabilities, but their list-decoding capabilities are not fully understood. Given the prevalence of Reed-Solomon codes, a ... more >>>
A simple, recently observed generalization of the classical Singleton bound to list-decoding asserts that rate $R$ codes are not list-decodable using list-size $L$ beyond an error fraction $\frac{L}{L+1} (1-R)$ (the Singleton bound being the case of $L=1$, i.e., unique decoding). We prove that in order to approach this bound for ... more >>>