We prove that, with high probability, the space complexity of refuting
a random unsatisfiable boolean formula in $k$-CNF on $n$
variables and $m = \Delta n$ clauses is
$O(n \cdot \Delta^{-\frac{1}{k-2}})$.
One powerful theme in complexity theory and pseudorandomness in the past few decades has been the use of lower bounds to give pseudorandom generators (PRGs). However, the general results using this hardness vs. randomness paradigm suffer a quantitative loss in parameters, and hence do not give nontrivial implications for models ... more >>>