Amos Beimel, Yuval Ishai

A Private Information Retrieval (PIR) protocol enables a user to

retrieve a data item from a database while hiding the identity of the

item being retrieved. In a $t$-private, $k$-server PIR protocol the

database is replicated among $k$ servers, and the user's privacy is

protected from any collusion of up ...
more >>>

Benny Applebaum, Jonathan Avron, Christina Brzuska

We study the possibility of computing cryptographic primitives in a fully-black-box arithmetic model over a finite field F. In this model, the input to a cryptographic primitive (e.g., encryption scheme) is given as a sequence of field elements, the honest parties are implemented by arithmetic circuits which make only a ... more >>>

Benny Applebaum, Pavel Raykov

\emph{Statistical Zero-knowledge proofs} (Goldwasser, Micali and Rackoff, SICOMP 1989) allow a computationally-unbounded server to convince a computationally-limited client that an input $x$ is in a language $\Pi$ without revealing any additional information about $x$ that the client cannot compute by herself. \emph{Randomized encoding} (RE) of functions (Ishai and Kushilevitz, FOCS ... more >>>

Benny Applebaum, Pavel Raykov

Goos, Pitassi and Watson (ITCS, 2015) have recently introduced the notion of Zero-Information Arthur-Merlin Protocols (ZAM). In this model, which can be viewed as a private version of the standard Arthur-Merlin communication complexity game, Alice and Bob are holding a pair of inputs $x$ and $y$ respectively, and Merlin, the ... more >>>

Benny Applebaum, Barak Arkis

Consider the following secret-sharing problem. Your goal is to distribute a long file $s$ between $n$ servers such that $(d-1)$-subsets cannot recover the file, $(d+1)$-subsets can recover the file, and $d$-subsets should be able to recover $s$ if and only if they appear in some predefined list $L$. How small ... more >>>