Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > PIGEON HOLE PRINCIPLE:
Reports tagged with pigeon hole principle:
TR00-008 | 20th January 2000
Albert Atserias, Nicola Galesi, Ricard Gavaldà

Monotone Proofs of the Pigeon Hole Principle

We study the complexity of proving the Pigeon Hole
Principle (PHP) in a monotone variant of the Gentzen Calculus, also
known as Geometric Logic. We show that the standard encoding
of the PHP as a monotone sequent admits quasipolynomial-size proofs
in this system. This result is a consequence of ... more >>>


TR00-087 | 14th November 2000
Albert Atserias, Nicola Galesi, Pavel Pudlak

Monotone simulations of nonmonotone propositional proofs

We show that an LK proof of size $m$ of a monotone sequent (a sequent

that contains only formulas in the basis $\wedge,\vee$) can be turned

into a proof containing only monotone formulas of size $m^{O(\log m)}$

and with the number of proof lines polynomial in $m$. Also we show

... more >>>

TR24-060 | 4th April 2024
Lijie Chen, Jiatu Li, Igor Carboni Oliveira

Reverse Mathematics of Complexity Lower Bounds

Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are necessary to prove a given theorem. In this work, we systematically explore the reverse mathematics of complexity lower bounds. We explore reversals in the setting of bounded arithmetic, with Cook's theory $\mathbf{PV}_1$ as the base ... more >>>




ISSN 1433-8092 | Imprint