While deterministic finite automata seem to be well understood, surprisingly
many important problems
concerning nondeterministic finite automata (nfa's) remain open.
One such problem area is the study of different measures of nondeterminism in
finite automata and the
estimation of the sizes of minimal nondeterministic finite automata. In this
paper the ...
more >>>
Kummer's cardinality theorem states that a language is recursive
if a Turing machine can exclude for any n words one of the
n + 1 possibilities for the number of words in the language. It
is known that this theorem does not hold for polynomial-time
computations, but there ...
more >>>
Let $\F\{x_1,x_2,\cdots,x_n\}$ be the noncommutative polynomial
ring over a field $\F$, where the $x_i$'s are free noncommuting
formal variables. Given a finite automaton $\A$ with the $x_i$'s as
alphabet, we can define polynomials $\f( mod A)$ and $\f(div A)$
obtained by natural operations that we ...
more >>>
We study the power of classical and quantum algorithms equipped with nonuniform advice, in the form of a coin whose bias encodes useful information. This question takes on particular importance in the quantum case, due to a surprising result that we prove: a quantum finite automaton with just two states ... more >>>
The problem of determining whether several finite automata accept a word in common is closely related to the well-studied membership problem in transformation monoids. We raise the issue of limiting the number of final states in the automata intersection problem. For automata with two final states, we show the problem ... more >>>
The two-way quantum/classical finite automaton (2QCFA), defined by Ambainis and Watrous, is a model of quantum computation whose quantum part is extremely limited; however, as they showed, 2QCFA are surprisingly powerful: a 2QCFA, with a single qubit, can recognize, with one-sided bounded-error, the language $L_{eq}=\{a^m b^m |m \in \mathbb{N}\}$ in ... more >>>
The two-way finite automaton with quantum and classical states (2QCFA), defined by Ambainis and Watrous, is a model of quantum computation whose quantum part is extremely limited; however, as they showed, 2QCFA are surprisingly powerful: a 2QCFA with only a single-qubit can recognize the language $L_{pal}=\{w \in \{a,b\}^*:w \text{ is ... more >>>