We design a $0.795$ approximation algorithm for the Max-Bisection problem
restricted to regular graphs. In the case of three regular graphs our
results imply an approximation ratio of $0.834$.
The max-bisection problem is to find a partition of the vertices of a
graph into two equal size subsets that maximizes the number of edges with
endpoints in both subsets.
We obtain new improved approximation ratios for the max-bisection problem on
the low degree $k$-regular graphs for ...
more >>>
A graph $G$ has an \emph{$S$-factor} if there exists a spanning subgraph $F$ of $G$ such that for all $v \in V: \deg_F(v) \in S$.
The simplest example of such factor is a $1$-factor, which corresponds to a perfect matching in a graph. In this paper we study the computational ...
more >>>