Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with algebraic complexity theory:
TR00-036 | 29th May 2000
Carsten Damm, Markus Holzer, Pierre McKenzie

The Complexity of Tensor Calculus

Tensor calculus over semirings is shown relevant to complexity
theory in unexpected ways. First, evaluating well-formed tensor
formulas with explicit tensor entries is shown complete for $\olpus\P$,
for $\NP$, and for $\#\P$ as the semiring varies. Indeed the
permanent of a matrix is shown expressible as ... more >>>

TR17-034 | 21st February 2017
Karl Bringmann, Christian Ikenmeyer, Jeroen Zuiddam

On algebraic branching programs of small width

Revisions: 1

In 1979 Valiant showed that the complexity class VP_e of families with polynomially bounded formula size is contained in the class VP_s of families that have algebraic branching programs (ABPs) of polynomially bounded size. Motivated by the problem of separating these classes we study the topological closure VP_e-bar, i.e. the ... more >>>

TR17-131 | 1st September 2017
Joshua Grochow, Cris Moore

Designing Strassen's algorithm

In 1969, Strassen shocked the world by showing that two n x n matrices could be multiplied in time asymptotically less than $O(n^3)$. While the recursive construction in his algorithm is very clear, the key gain was made by showing that 2 x 2 matrix multiplication could be performed with ... more >>>

TR18-044 | 5th March 2018
Alessandro Chiesa, Michael Forbes, Tom Gur, Nicholas Spooner

Spatial Isolation Implies Zero Knowledge Even in a Quantum World

Revisions: 1

Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assumption: if the provers are spatially isolated, ... more >>>

ISSN 1433-8092 | Imprint