In this paper, we address the problem of evaluating the
Integer Circuit (IC), or the $\{\cup, \times, +\}$-circuit over
the set of natural numbers. The problem is a natural extension
to the integer expression by Stockmeyer and Mayer, and is also studied
by Mckenzie, Vollmer and Wagner in ...
more >>>
Many results in fine-grained complexity reveal intriguing consequences from solving various SAT problems even slightly faster than exhaustive search. We prove a ``self-improving'' (or ``bootstrapping'') theorem for Circuit-SAT, $\#$Circuit-SAT, and its fully-quantified version: solving one of these problems faster for ``large'' circuit sizes implies a significant speed-up for ``smaller'' circuit ... more >>>