We show how one can use non-prime-power, composite moduli for
computing representations of the product of two $n\times n$ matrices
using only $n^{2+o(1)}$ multiplications.
We consider the following phenomenon: with just one multiplication
we can compute (3u+2v)(3x+2y)= 3ux+4vy mod 6, while computing the same polynomial modulo 5 needs 2 multiplications. We generalize this observation and we define some vectors, called sixtors, with remarkable zero-divisor properties. Using sixtors, we also generalize our earlier result ...
more >>>
We show that for any coprime $m,r$ there is a circuit of the form $\text{MOD}_m\circ \text{AND}_{d(n)}$ whose correlation with $\text{MOD}_r$ is at least $2^{-O\left( \frac{n}{d(n)} \right) }$. This is the first correlation lower bound for arbitrary $m,r$, whereas previously lower bounds were known for prime $m$. Our motivation is the ... more >>>
We obtain a new depth-reduction construction, which implies a super-exponential improvement in the depth lower bound separating $NEXP$ from non-uniform $ACC$.
In particular, we show that every circuit with $AND,OR,NOT$, and $MOD_m$ gates, $m\in\mathbb{Z}^+$, of polynomial size and depth $d$ can be reduced to a depth-$2$, $SYM\circ AND$, circuit of ... more >>>
We study approximation of Boolean functions by low-degree polynomials over the ring $\mathbb{Z}/2^k\mathbb{Z}$. More precisely, given a Boolean function F$:\{0,1\}^n \rightarrow \{0,1\}$, define its $k$-lift to be F$_k:\{0,1\}^n \rightarrow \{0,2^{k-1}\}$ by $F_k(x) = 2^{k-F(x)}$ (mod $2^k$). We consider the fractional agreement (which we refer to as $\gamma_{d,k}(F)$) of $F_k$ with ... more >>>