Scott Aaronson

Given a Boolean function f, we study two natural generalizations of the certificate complexity C(f): the randomized certificate complexity RC(f) and the quantum certificate complexity QC(f). Using Ambainis' adversary method, we exactly characterize QC(f) as the square root of RC(f). We then use this result to prove the new relation ... more >>>

Scott Aaronson

In earlier work, we gave an oracle separating the relational versions of BQP and the polynomial hierarchy, and showed that an oracle separating the decision versions would follow from what we called the Generalized Linial-Nisan (GLN) Conjecture: that "almost k-wise independent" distributions are indistinguishable from the uniform distribution by constant-depth ... more >>>

Andris Ambainis, Xiaoming Sun

In this note we give a new separation between sensitivity and block sensitivity of Boolean functions: $bs(f)=\frac{2}{3}s(f)^2-\frac{1}{3}s(f)$.

more >>>Avishay Tal

For Boolean functions $f:\{0,1\}^n \to \{0,1\}$ and $g:\{0,1\}^m \to \{0,1\}$, the function composition of $f$ and $g$ denoted by $f\circ g : \{0,1\}^{nm} \to \{0,1\}$ is the value of $f$ on $n$ inputs, each of them is the calculation of $g$ on a distinct set of $m$ Boolean variables. Motivated ... more >>>

Andris Ambainis, Krisjanis Prusis

Sensitivity, certificate complexity and block sensitivity are widely used Boolean function complexity measures. A longstanding open problem, proposed by Nisan and Szegedy, is whether sensitivity and block sensitivity are polynomially related. Motivated by the constructions of functions which achieve the largest known separations, we study the relation between 1-certificate complexity ... more >>>

Andris Ambainis, Jevgenijs Vihrovs

We study the structure of sets $S\subseteq\{0, 1\}^n$ with small sensitivity. The well-known Simon's lemma says that any $S\subseteq\{0, 1\}^n$ of sensitivity $s$ must be of size at least $2^{n-s}$. This result has been useful for proving lower bounds on sensitivity of Boolean functions, with applications to the theory of ... more >>>

Avishay Tal

The sensitivity of a Boolean function $f:\{0,1\}^n \to \{0,1\}$ is the maximal number of neighbors a point in the Boolean hypercube has with different $f$-value. Roughly speaking, the block sensitivity allows to flip a set of bits (called a block) rather than just one bit, in order to change the ... more >>>

Mitali Bafna, Satyanarayana V. Lokam, Sébastien Tavenas, Ameya Velingker

Various combinatorial/algebraic parameters are used to quantify the complexity of a Boolean function. Among them, sensitivity is one of the simplest and block sensitivity is one of the most useful. Nisan (1989) and Nisan and Szegedy (1991) showed that block sensitivity and several other parameters, such as certificate complexity, decision ... more >>>

Siddhesh Chaubal, Anna Gal

Nisan and Szegedy conjectured that block sensitivity is at most

polynomial in sensitivity for any Boolean function.

Until a recent breakthrough of Huang, the conjecture had been

wide open in the general case,

and was proved only for a few special classes

of Boolean functions.

Huang's result implies that block ...
more >>>

Siddhesh Chaubal, Anna Gal

In this paper, we introduce a measure of Boolean functions we call diameter, that captures the relationship between certificate complexity and several other measures of Boolean functions. Our measure can be viewed as a variation on alternating number, but while alternating number can be exponentially larger than certificate complexity, we ... more >>>

Rahul Chugh, Supartha Poddar, Swagato Sanyal

Relations between the decision tree complexity and various other complexity measures of Boolean functions is a thriving topic of research in computational complexity. While decision tree complexity is long known to be polynomially related with many other measures, the optimal exponents of many of these relations are not known. It ... more >>>

Sourav Chakraborty, Anna Gal, Sophie Laplante, Rajat Mittal, Anupa Sunny

We introduce and study Certificate Game complexity, a measure of complexity based on the probability of winning a game where two players are given inputs with different function values and are asked to output some index $i$ such that $x_i\neq y_i$, in a zero-communication setting.

We give upper and lower ... more >>>