Let $\F\{x_1,x_2,\cdots,x_n\}$ be the noncommutative polynomial
ring over a field $\F$, where the $x_i$'s are free noncommuting
formal variables. Given a finite automaton $\A$ with the $x_i$'s as
alphabet, we can define polynomials $\f( mod A)$ and $\f(div A)$
obtained by natural operations that we ...
more >>>
An algebraic branching program (ABP) A can be modelled as a product expression $X_1\cdot X_2\cdot \dots \cdot X_d$, where $X_1$ and $X_d$ are $1 \times w$ and $w \times 1$ matrices respectively, and every other $X_k$ is a $w \times w$ matrix; the entries of these matrices are linear forms ... more >>>
In 1979 Valiant showed that the complexity class VP_e of families with polynomially bounded formula size is contained in the class VP_s of families that have algebraic branching programs (ABPs) of polynomially bounded size. Motivated by the problem of separating these classes we study the topological closure VP_e-bar, i.e. the ... more >>>
Based on a theorem of Bergman we show that multivariate noncommutative polynomial factorization is deterministic polynomial-time reducible to the factorization of bivariate noncommutative polynomials. More precisely, we show the following:
(1) In the white-box setting, given an n-variate noncommutative polynomial f in F over a field F (either a ... more >>>