We continue the study of {\em robust} tensor codes and expand the
class of base codes that can be used as a starting point for the
construction of locally testable codes via robust two-wise tensor
products. In particular, we show that all unique-neighbor expander
codes and all locally correctable codes, ...
more >>>
The problem of finding a nontrivial factor of a polynomial $f(x)$ over a finite field $\mathbb{F}_q$ has many known efficient, but randomized, algorithms. The deterministic complexity of this problem is a famous open question even assuming the generalized Riemann hypothesis (GRH). In this work we improve the state of the ... more >>>
We prove that approximating the rank of a 3-tensor to within a factor of $1 + 1/1852 - \delta$, for any $\delta > 0$, is NP-hard over any finite field. We do this via reduction from bounded occurrence 2-SAT.
more >>>We present a new algorithm for solving homogeneous multilinear equations, which are high dimensional generalisations of solving homogeneous linear equations. First, we present a linear time reduction from solving generic homogeneous multilinear equations to computing hyperdeterminants, via a high dimensional Cramer's rule. Hyperdeterminants are generalisations of determinants, associated with tensors ... more >>>