A propositional proof system based on ordered binary decision diagrams (OBDDs) was introduced by Atserias et al. Krajicek proved exponential lower bounds for a strong variant of this system using feasible interpolation, and Tveretina et al. proved exponential lower bounds for restricted versions of this system for refuting formulas derived ... more >>>
Propositional proof complexity is an area of complexity theory that addresses the question of whether the class NP is closed under complement, and also provides a theoretical framework for studying practical applications such as SAT solving.
Some of the most well-studied contradictions are random $k$-CNF formulas where each clause of ...
more >>>
We prove new lower bounds on the sizes of proofs in the Cutting Plane proof system, using a concept that we call "unsatisfiability certificate". This approach is, essentially, equivalent to the well-known feasible interpolation method, but is applicable to CNF formulas that do not seem suitable for interpolation. Specifically, we ... more >>>
As a natural extension of the SAT problem, different proof systems for quantified Boolean formulas (QBF) have been proposed. Many of these extend a propositional system to handle universal quantifiers.
By formalising the construction of the QBF proof system from a propositional proof system, by the addition of the ... more >>>
One of the major open problems in proof complexity is to prove lower bounds on $AC_0[p]$-Frege proof
systems. As a step toward this goal Impagliazzo, Mouli and Pitassi in a recent paper suggested to prove
lower bounds on the size for Polynomial Calculus over the $\{\pm 1\}$ basis. In this ...
more >>>