Mathematics was developed as a strong research instrument with fully verifiable argumentations. We call any formal theory based on syntactic rules that enables to algorithmically verify for any given text whether it is a proof or not algorithmically verifiable mathematics (AV-mathematics for short). We say that a decision problem L ... more >>>
We establish unconditionally that for every integer $k \geq 1$ there is a language $L \in P$ such that it is consistent with Cook's theory PV that $L \notin SIZE(n^k)$. Our argument is non-constructive and does not provide an explicit description of this language.
more >>>Proving that there are problems in $P^{NP}$ that require boolean circuits of super-linear size is a major frontier in complexity theory. While such lower bounds are known for larger complexity classes, existing results only show that the corresponding problems are hard on infinitely many input lengths. For instance, proving almost-everywhere ... more >>>
While there has been progress in establishing the unprovability of complexity statements in lower fragments of bounded arithmetic, understanding the limits of Jerabek's theory $\textbf{APC}_1$ (2007) and of higher levels of Buss's hierarchy $\textbf{S}^i_2$ (1986) has been a more elusive task. Even in the more restricted setting of Cook's theory ... more >>>
We show that there is a constant $k$ such that Buss's intuitionistic theory $\mathbf{IS}^1_2$ does not prove that SAT requires co-nondeterministic circuits of size at least $n^k$. To our knowledge, this is the first unconditional unprovability result in bounded arithmetic in the context of worst-case fixed-polynomial size circuit lower bounds. ... more >>>