We show a communication complexity lower bound for finding a correlated equilibrium of a two-player game. More precisely, we define a two-player $N \times N$ game called the 2-cycle game and show that the randomized communication complexity of finding a 1/poly($N$)-approximate correlated equilibrium of the 2-cycle game is $\Omega(N)$. For ... more >>>
In the recent paper of~\cite{BR16}, the authors show that, for any constant $10^{-15} > \varepsilon > 0$ the communication complexity of $\varepsilon$-approximate Nash equilibria in $2$-player $n \times n$ games is $n^{\Omega(\varepsilon)}$, resolving the long open problem of whether or not there exists a polylogarithmic communication protocol. In this paper ... more >>>