We study some problems solvable in deterministic polynomial time given oracle access to the (promise version of) the Arthur-Merlin class.
Our main results are the following: (i) $BPP^{NP}_{||} \subseteq P^{prAM}_{||}$; (ii) $S_2^p \subseteq P^{prAM}$. In addition to providing new upperbounds for the classes $S_2^p$ and $BPP^{NP}_{||}$, these results are interesting ...
more >>>
Consider a homogeneous degree $d$ polynomial $f = T_1 + \cdots + T_s$, $T_i = g_i(\ell_{i,1}, \ldots, \ell_{i, m})$ where $g_i$'s are homogeneous $m$-variate degree $d$ polynomials and $\ell_{i,j}$'s are linear polynomials in $n$ variables. We design a (randomized) learning algorithm that given black-box access to $f$, computes black-boxes for ... more >>>
We present a general framework for designing efficient algorithms for unsupervised learning problems, such as mixtures of Gaussians and subspace clustering. Our framework is based on a meta algorithm that learns arithmetic circuits in the presence of noise, using lower bounds. This builds upon the recent work of Garg, Kayal ... more >>>
We present a deterministic $2^{k^{\mathcal{O}(1)}} \text{poly}(n,d)$ time algorithm for decomposing $d$-dimensional, width-$n$ tensors of rank at most $k$ over $\mathbb{R}$ and $\mathbb{C}$. This improves upon the previous randomized algorithm of Peleg, Shpilka, and Volk (ITCS '24) that takes $2^{k^{k^{\mathcal{O}(k)}}} \text{poly}(n,d)$ time and the deterministic $n^{k^k}$ time algorithms of Bhargava, Saraf, ... more >>>