Let $f_{1},f_{2}, f_{3}:\mathbb{F}_{2}^{n} \to \{0,1\}$ be three Boolean functions.
We say a triple $(x,y,x+y)$ is a \emph{triangle} in the function-triple $(f_{1}, f_{2}, f_{3})$ if $f_{1}(x)=f_{2}(y)=f_{3}(x+y)=1$.
$(f_{1}, f_{2}, f_{3})$ is said to be \emph{triangle-free} if there is no triangle in the triple. The distance between a function-triple
and ...
more >>>