The complexity class ModL was defined by Arvind and Vijayaraghavan in [AV04] (more precisely in Definition 1.4.1, Vij08],[Definition 3.1, AV]). In this paper, under the assumption that NL =UL, we show that for every language $L\in ModL$ there exists a function $f\in \sharpL$ and a function $g\in FL$ such that ... more >>>
Recently in [Vij09, Corollary 3.7] the complexity class ModL has been shown to be closed under complement assuming NL = UL. In this note we continue to show many other closure properties of ModL which include the following.
1. ModL is closed under $\leq ^L_m$ reduction, $\vee$(join) and $\leq ^{UL}_m$ ... more >>>