Following Hastad, Pass, Pietrzak, and Wikstrom (2008), we study parallel repetition theorems for public-coin interactive arguments and their generalization. We obtain the following results:
1. We show that the reduction of Hastad et al. actually gives a tight direct product theorem for public-coin interactive arguments. That is, $n$-fold parallel repetition ... more >>>
We explore the implications of the two queries assumption, $P^{NP[1]}=P_{||}^{NP[2]}$, with respect to the polynomial hierarchy and the classes $AM$ and $MA$.
We prove the following results:
1. $P^{NP[1]}=P_{||}^{NP[2]}$ $\implies$ $AM = MA$
2. $P^{NP[1]}=P_{||}^{NP[2]}$ $\implies$ $PH \subset MA_{/1}$
3. $\exists\;B\;P^{NP[1]^B}=P^{NP[2]^B}$ and $NP^B \not\subseteq coMA^B$.
4. $P^{NP[1]}=P_{||}^{NP[2]}$ $\implies$ $PH ...
more >>>
We introduce and study a new model of interactive proofs: AM(k), or Arthur-Merlin with k non-communicating Merlins. Unlike with the better-known MIP, here the assumption is that each Merlin receives an independent random challenge from Arthur. One motivation for this model (which we explore in detail) comes from the close ... more >>>
Testing whether a set $\mathbf{f}$ of polynomials has an algebraic dependence is a basic problem with several applications. The polynomials are given as algebraic circuits. Algebraic independence testing question is wide open over finite fields (Dvir, Gabizon, Wigderson, FOCS'07). The best complexity known is NP$^{\#\rm P}$ (Mittmann, Saxena, Scheiblechner, Trans.AMS'14). ... more >>>
We give new algorithms in the annotated data streaming setting---also known as verifiable data stream computation---for certain graph problems. This setting is meant to model outsourced computation, where a space-bounded verifier limited to sequential data access seeks to overcome its computational limitations by engaging a powerful prover, without needing to ... more >>>
We study graph computations in an enhanced data streaming setting, where a space-bounded client reading the edge stream of a massive graph may delegate some of its work to a cloud service. We seek algorithms that allow the client to verify a purported proof sent by the cloud service that ... more >>>
We present the first truly explicit constructions of \emph{non-malleable codes} against tampering by bounded polynomial size circuits. These objects imply unproven circuit lower bounds and our construction is secure provided E requires exponential size nondeterministic circuits, an assumption from the derandomization literature.
Prior works on NMC ...
more >>>