Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > RATIONAL APPROXIMATION:
Reports tagged with rational approximation:
TR09-098 | 9th October 2009
Alexander A. Sherstov

The intersection of two halfspaces has high threshold degree

Revisions: 1

The threshold degree of a Boolean function
$f\colon\{0,1\}\to\{-1,+1\}$ is the least degree of a real
polynomial $p$ such $f(x)\equiv\mathrm{sgn}\; p(x).$ We
construct two halfspaces on $\{0,1\}^n$ whose intersection has
threshold degree $\Theta(\sqrt n),$ an exponential improvement on
previous lower bounds. This solves an open problem due to Klivans
(2002) and ... more >>>


TR19-016 | 5th February 2019
Alexander A. Sherstov

The hardest halfspace

We study the approximation of halfspaces $h:\{0,1\}^n\to\{0,1\}$ in the infinity norm by polynomials and rational functions of any given degree. Our main result is an explicit construction of the "hardest" halfspace, for which we prove polynomial and rational approximation lower bounds that match the trivial upper bounds achievable for all ... more >>>




ISSN 1433-8092 | Imprint