Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > POLYNOMIAL APPROXIMATION:
Reports tagged with polynomial approximation:
TR09-102 | 21st October 2009
Andrew Drucker, Ronald de Wolf

Quantum Proofs for Classical Theorems

Alongside the development of quantum algorithms and quantum complexity theory in recent years, quantum techniques have also proved instrumental in obtaining results in classical (non-quantum) areas. In this paper we survey these results and the quantum toolbox they use.

more >>>

TR12-037 | 10th April 2012
Alexander A. Sherstov

Making Polynomials Robust to Noise

A basic question in any computational model is how to reliably compute a given function when the inputs or intermediate computations are subject to noise at a constant rate. Ideally, one would like to use at most a constant factor more resources compared to the noise-free case. This question has ... more >>>


TR13-005 | 2nd January 2013
Alexander A. Sherstov

Communication Lower Bounds Using Directional Derivatives

We prove that the set disjointness problem has randomized communication complexity
$\Omega(\sqrt{n}/2^{k}k)$ in the number-on-the-forehead model with $k$ parties, a quadratic improvement
on the previous bound $\Omega(\sqrt{n}/2^{k})^{1/2}$. Our result remains valid for quantum
protocols, where it is essentially tight. Proving it was an open problem since 1997, ... more >>>


TR13-023 | 6th February 2013
Alexander A. Sherstov

Approximating the AND-OR Tree

The approximate degree of a Boolean function $f$ is the least degree of a real polynomial
that approximates $f$ within $1/3$ at every point. We prove that the function $\bigwedge_{i=1}^{n}\bigvee_{j=1}^{n}x_{ij}$,
known as the AND-OR tree, has approximate degree $\Omega(n).$ This lower bound is tight
and closes a ... more >>>


TR13-032 | 26th February 2013
Mark Bun, Justin Thaler

Dual Lower Bounds for Approximate Degree and Markov-Bernstein Inequalities

Revisions: 2

The $\epsilon$-approximate degree of a Boolean function $f: \{-1, 1\}^n \to \{-1, 1\}$ is the minimum degree of a real polynomial that approximates $f$ to within $\epsilon$ in the $\ell_\infty$ norm. We prove several lower bounds on this important complexity measure by explicitly constructing solutions to the dual of an ... more >>>


TR13-151 | 7th November 2013
Mark Bun, Justin Thaler

Hardness Amplification and the Approximate Degree of Constant-Depth Circuits

Revisions: 3

We establish a generic form of hardness amplification for the approximability of constant-depth Boolean circuits by polynomials. Specifically, we show that if a Boolean circuit cannot be pointwise approximated by low-degree polynomials to within constant error in a certain one-sided sense, then an OR of disjoint copies of that circuit ... more >>>


TR14-009 | 21st January 2014
Alexander A. Sherstov

Breaking the Minsky-Papert Barrier for Constant-Depth Circuits

The threshold degree of a Boolean function $f$ is the minimum degree of
a real polynomial $p$ that represents $f$ in sign: $f(x)\equiv\mathrm{sgn}\; p(x)$. In a seminal 1969
monograph, Minsky and Papert constructed a polynomial-size constant-depth
$\{\wedge,\vee\}$-circuit in $n$ variables with threshold degree $\Omega(n^{1/3}).$ This bound underlies ... more >>>


TR15-041 | 25th March 2015
Mark Bun, Justin Thaler

Dual Polynomials for Collision and Element Distinctness

The approximate degree of a Boolean function $f: \{-1, 1\}^n \to \{-1, 1\}$ is the minimum degree of a real polynomial that approximates $f$ to within error $1/3$ in the $\ell_\infty$ norm. In an influential result, Aaronson and Shi (J. ACM 2004) proved tight $\tilde{\Omega}(n^{1/3})$ and $\tilde{\Omega}(n^{2/3})$ lower bounds on ... more >>>


TR15-147 | 8th September 2015
Alexander A. Sherstov

The Power of Asymmetry in Constant-Depth Circuits

The threshold degree of a Boolean function $f$ is the minimum degree of
a real polynomial $p$ that represents $f$ in sign: $f(x)\equiv\mathrm{sgn}\; p(x)$. Introduced
in the seminal work of Minsky and Papert (1969), this notion is central to
some of the strongest algorithmic and complexity-theoretic results for
more >>>


TR16-121 | 4th August 2016
Mark Bun, Justin Thaler

Approximate Degree and the Complexity of Depth Three Circuits

Revisions: 1

Threshold weight, margin complexity, and Majority-of-Threshold circuit size are basic complexity measures of Boolean functions that arise in learning theory, communication complexity, and circuit complexity. Each of these measures might exhibit a chasm at depth three: namely, all polynomial size Boolean circuits of depth two have polynomial complexity under the ... more >>>


TR17-051 | 16th March 2017
Mark Bun, Justin Thaler

A Nearly Optimal Lower Bound on the Approximate Degree of AC$^0$

The approximate degree of a Boolean function $f \colon \{-1, 1\}^n \rightarrow \{-1, 1\}$ is the least degree of a real polynomial that approximates $f$ pointwise to error at most $1/3$. We introduce a generic method for increasing the approximate degree of a given function, while preserving its computability by ... more >>>


TR18-157 | 10th September 2018
Nutan Limaye, Karteek Sreenivasiah, Srikanth Srinivasan, Utkarsh Tripathi, S Venkitesh

The Coin Problem in Constant Depth: Sample Complexity and Parity gates

Revisions: 2

The $\delta$-Coin Problem is the computational problem of distinguishing between coins that are heads with probability $(1+\delta)/2$ or $(1-\delta)/2,$ where $\delta$ is a parameter that is going to $0$. We study the complexity of this problem in the model of constant-depth Boolean circuits and prove the following results.

1. Upper ... more >>>


TR19-016 | 5th February 2019
Alexander A. Sherstov

The hardest halfspace

We study the approximation of halfspaces $h:\{0,1\}^n\to\{0,1\}$ in the infinity norm by polynomials and rational functions of any given degree. Our main result is an explicit construction of the "hardest" halfspace, for which we prove polynomial and rational approximation lower bounds that match the trivial upper bounds achievable for all ... more >>>


TR19-073 | 17th May 2019
Igor Carboni Oliveira, Rahul Santhanam, Srikanth Srinivasan

Parity helps to compute Majority

We study the complexity of computing symmetric and threshold functions by constant-depth circuits with Parity gates, also known as AC$^0[\oplus]$ circuits. Razborov (1987) and Smolensky (1987, 1993) showed that Majority requires depth-$d$ AC$^0[\oplus]$ circuits of size $2^{\Omega(n^{1/2(d-1)})}$. By using a divide-and-conquer approach, it is easy to show that Majority can ... more >>>


TR20-020 | 21st February 2020
Nikhil Mande, Justin Thaler, Shuchen Zhu

Improved Approximate Degree Bounds For $k$-distinctness

An open problem that is widely regarded as one of the most important in quantum query complexity is to resolve the quantum query complexity of the $k$-distinctness function on inputs of size $N$. While the case of $k=2$ (also called Element Distinctness) is well-understood, there is a polynomial gap between ... more >>>


TR20-046 | 13th April 2020
Srikanth Srinivasan

A Robust Version of Heged\H{u}s's Lemma, with Applications

Heged\H{u}s's lemma is the following combinatorial statement regarding polynomials over finite fields. Over a field $\mathbb{F}$ of characteristic $p > 0$ and for $q$ a power of $p$, the lemma says that any multilinear polynomial $P\in \mathbb{F}[x_1,\ldots,x_n]$ of degree less than $q$ that vanishes at all points in $\{0,1\}^n$ of ... more >>>


TR22-123 | 4th September 2022
Alexander A. Sherstov

The Approximate Degree of DNF and CNF Formulas

The approximate degree of a Boolean function $f\colon\{0,1\}^n\to\{0,1\}$ is the minimum degree of a real polynomial $p$ that approximates $f$ pointwise: $|f(x)-p(x)|\leq1/3$ for all $x\in\{0,1\}^n.$ For every $\delta>0,$ we construct CNF and DNF formulas of polynomial size with approximate degree $\Omega(n^{1-\delta}),$ essentially matching the trivial upper bound of $n.$ This ... more >>>




ISSN 1433-8092 | Imprint