The relationship between BQP and PH has been an open problem since the earliest days of quantum computing. We present evidence that quantum computers can solve problems outside the entire polynomial hierarchy, by relating this question to topics in circuit complexity, pseudorandomness, and Fourier analysis.
First, we show that there ... more >>>
In earlier work, we gave an oracle separating the relational versions of BQP and the polynomial hierarchy, and showed that an oracle separating the decision versions would follow from what we called the Generalized Linial-Nisan (GLN) Conjecture: that "almost k-wise independent" distributions are indistinguishable from the uniform distribution by constant-depth ... more >>>
In the setting known as DLOGTIME-uniformity,
the fundamental complexity classes
$AC^0\subset ACC^0\subseteq TC^0\subseteq NC^1$ have several
robust characterizations.
In this paper we refine uniformity further and examine the impact
of these refinements on $NC^1$ and its subclasses.
When applied to the logarithmic circuit depth characterization of $NC^1$,
some refinements leave ...
more >>>
We describe a new pseudorandom generator for AC0. Our generator $\epsilon$-fools circuits of depth $d$ and size $M$ and uses a seed of length $\tilde O( \log^{d+4} M/\epsilon)$. The previous best construction for $d \geq 3$ was due to Nisan, and had seed length $O(\log^{2d+6} M/\epsilon)$.
A seed length of ...
more >>>
{\em Does derandomization of probabilistic algorithms become easier when the number of ``bad'' random inputs is extremely small?}
In relation to the above question, we put forward the following {\em quantified derandomization challenge}:
For a class of circuits $\cal C$ (e.g., P/poly or $AC^0,AC^0[2]$) and a bounding function $B:\N\to\N$ (e.g., ...
more >>>
We examine visibly counter languages, which are languages recognized by visibly counter automata (a.k.a. input driven counter automata). We are able to effectively characterize the visibly counter languages in AC0, and show that they are contained in FO[+].
more >>>We consider randomness extraction by AC0 circuits. The main parameter, $n$, is the length of the source, and all other parameters are functions of it. The additional extraction parameters are the min-entropy bound $k=k(n)$, the seed length $r=r(n)$, the output length $m=m(n)$, and the (output) deviation bound $\epsilon=\epsilon(n)$.
For $k ... more >>>
We study complexity measures on subsets of the boolean hypercube and exhibit connections between algebra (the Hilbert function) and combinatorics (VC theory). These connections yield results in both directions. Our main complexity-theoretic result proves that most linear program feasibility problems cannot be computed by polynomial-sized constant-depth circuits. Moreover, our result ... more >>>
We study two variants of seeded randomness extractors. The first one, as studied by Goldreich et al. \cite{goldreich2015randomness}, is seeded extractors that can be computed by $AC^0$ circuits. The second one, as introduced by Bogdanov and Guo \cite{bogdanov2013sparse}, is (strong) extractor families that consist of sparse transformations, i.e., functions that ... more >>>
Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs as an elegant relaxation of error correcting codes, where the motivation is to handle more general forms of tampering while still providing meaningful guarantees. This has led to many elegant constructions and applications in cryptography. However, most works so far only ... more >>>
We ask for feasibly constructive proofs of known circuit lower bounds for explicit functions on bit strings of length $n$. In 1995 Razborov showed that many can be proved in Cook’s theory $PV_1$, a bounded arithmetic formalizing polynomial time reasoning. He formalized circuit lower bound statements for small $n$ of ... more >>>
We propose a new framework for constructing pseudorandom generators for $n$-variate Boolean functions. It is based on two new notions. First, we introduce fractional pseudorandom generators, which are pseudorandom distributions taking values in $[-1,1]^n$. Next, we use a fractional pseudorandom generator as steps of a random walk in $[-1,1]^n$ that ... more >>>
We give two results on the size of AC0 circuits computing promise majority. $\epsilon$-promise majority is majority promised that either at most an $\epsilon$ fraction of the input bits are 1, or at most $\epsilon$ are 0.
First, we show super quadratic lower bounds on both monotone and general depth ... more >>>
Cohen, Peri and Ta-Shma (STOC'21) considered the following question: Assume the vertices of an expander graph are labelled by $\pm 1$. What "test" functions $f : \{\pm 1\}^t \to \{\pm1 \}$ can or cannot distinguish $t$ independent samples from those obtained by a random walk? [CPTS'21] considered only balanced labelling, ... more >>>
We give PRG for depth-$d$, size-$m$ $\mathrm{AC}^0$ circuits with seed length $O(\log^{d-1}(m)\log(m/\varepsilon)\log\log(m))$. Our PRG improves on previous work [TX13, ST19, Kel21] from various aspects. It has optimal dependence on $\frac{1}{\varepsilon}$ and is only one “$\log\log(m)$” away from the lower bound barrier. For the case of $d=2$, the seed length tightly ... more >>>
We continue a line of work on extracting random bits from weak sources that are generated by simple processes. We focus on the model of locally samplable sources, where each bit in the source depends on a small number of (hidden) uniformly random input bits. Also known as local sources, ... more >>>
Rossman [In Proc. 34th Comput. Complexity Conf., 2019] introduced the notion of criticality. The criticality of a Boolean function $f : \{0, 1\}^n\to \{0, 1\}$ is the minimum $\lambda \geq 1$ such that for all positive integers $t$,
\[Pr_{\rho\sim R_p} [\text{DT}_{\text{depth}}(f|_\rho) \geq t] \leq (p\lambda)^t.\]
.
Håstad’s celebrated switching lemma ...
more >>>
We initiate the study of generalized $AC^0$ circuits comprised of arbitrary unbounded fan-in gates which only need to be constant over inputs of Hamming weight $\ge k$ (up to negations of the input bits), which we denote $GC^0(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ ... more >>>
We study extractors computable in uniform $\mathrm{AC}^0$ and uniform $\mathrm{NC}^1$.
For the $\mathrm{AC}^0$ setting, we give a construction such that for every $k \ge n/ \mathrm{poly} \log n, \eps \ge 2^{-\mathrm{poly} \log n}$, it can extract $(1-\gamma)k$ randomness from an $(n, k)$ source for an arbitrary constant ...
more >>>
Kumar (CCC, 2023) used a novel switching lemma to prove exponential-size lower bounds for a circuit class $GC^0$ that not only contains $AC^0$ but can---with a single gate---compute functions that require exponential-size $TC^0$ circuits. Their main result was that switching-lemma lower bounds for $AC^0$ lift to $GC^0$ with no loss ... more >>>