Scott Aaronson

The relationship between BQP and PH has been an open problem since the earliest days of quantum computing. We present evidence that quantum computers can solve problems outside the entire polynomial hierarchy, by relating this question to topics in circuit complexity, pseudorandomness, and Fourier analysis.

First, we show that there ... more >>>

Alex Bredariol Grilo, William Slofstra, Henry Yuen

In this work we consider the interplay between multiprover interactive proofs, quantum

entanglement, and zero knowledge proofs — notions that are central pillars of complexity theory,

quantum information and cryptography. In particular, we study the relationship between the

complexity class MIP$^*$ , the set of languages decidable by multiprover interactive ...
more >>>

Omri Shmueli

Quantum computers are expected to revolutionize our ability to process information. The advancement from classical to quantum computing is a product of our advancement from classical to quantum physics -- the more our understanding of the universe grows, so does our ability to use it for computation. A natural question ... more >>>