Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with dimension expanders:
TR09-135 | 10th December 2009
Zeev Dvir, Avi Wigderson

Monotone expanders - constructions and applications

The main purpose of this work is to formally define monotone expanders and motivate their study with (known and new) connections to other graphs and to several computational and pseudorandomness problems. In particular we explain how monotone expanders of constant degree lead to:
(1) Constant degree dimension expanders in finite ... more >>>

TR14-162 | 28th November 2014
Michael Forbes, Venkatesan Guruswami

Dimension Expanders via Rank Condensers

An emerging theory of "linear-algebraic pseudorandomness" aims to understand the linear-algebraic analogs of fundamental Boolean pseudorandom objects where the rank of subspaces plays the role of the size of subsets. In this work, we study and highlight the interrelationships between several such algebraic objects such as subspace designs, dimension ... more >>>

TR17-064 | 20th April 2017
Venkatesan Guruswami, Chaoping Xing, chen yuan

Subspace Designs based on Algebraic Function Fields

Subspace designs are a (large) collection of high-dimensional subspaces $\{H_i\}$ of $\F_q^m$ such that for any low-dimensional subspace $W$, only a small number of subspaces from the collection have non-trivial intersection with $W$; more precisely, the sum of dimensions of $W \cap H_i$ is at most some parameter $L$. The ... more >>>

ISSN 1433-8092 | Imprint