Zeev Dvir, Avi Wigderson

The main purpose of this work is to formally define monotone expanders and motivate their study with (known and new) connections to other graphs and to several computational and pseudorandomness problems. In particular we explain how monotone expanders of constant degree lead to:

(1) Constant degree dimension expanders in finite ...
more >>>

Michael Forbes, Venkatesan Guruswami

An emerging theory of "linear-algebraic pseudorandomness" aims to understand the linear-algebraic analogs of fundamental Boolean pseudorandom objects where the rank of subspaces plays the role of the size of subsets. In this work, we study and highlight the interrelationships between several such algebraic objects such as subspace designs, dimension ... more >>>

Venkatesan Guruswami, Chaoping Xing, chen yuan

Subspace designs are a (large) collection of high-dimensional subspaces $\{H_i\}$ of $\F_q^m$ such that for any low-dimensional subspace $W$, only a small number of subspaces from the collection have non-trivial intersection with $W$; more precisely, the sum of dimensions of $W \cap H_i$ is at most some parameter $L$. The ... more >>>

Yinan Li, Youming Qiao, Avi Wigderson, Yuval Wigderson, Chuanqi Zhang

A fundamental fact about bounded-degree graph expanders is that three notions of expansion---vertex expansion, edge expansion, and spectral expansion---are all equivalent. In this paper, we study to what extent such a statement is true for linear-algebraic notions of expansion.

There are two well-studied notions of linear-algebraic expansion, namely dimension expansion ... more >>>