Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > DNF FORMULAS:
Reports tagged with DNF formulas:
TR10-023 | 23rd February 2010
Adam Klivans, Homin Lee, Andrew Wan

Mansour’s Conjecture is True for Random DNF Formulas

Revisions: 3

In 1994, Y. Mansour conjectured that for every DNF formula on $n$ variables with $t$ terms there exists a polynomial $p$ with $t^{O(\log (1/\epsilon))}$ non-zero coefficients such that $\E_{x \in \{0,1\}}[(p(x)-f(x))^2] \leq \epsilon$. We make the first progress on this conjecture and show that it is true for several natural ... more >>>


TR12-060 | 16th May 2012
Parikshit Gopalan, Raghu Meka, Omer Reingold

DNF Sparsification and a Faster Deterministic Counting

Revisions: 2

Given a DNF formula $f$ on $n$ variables, the two natural size measures are the number of terms or size $s(f)$, and the maximum width of a term $w(f)$. It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be ... more >>>


TR18-013 | 18th January 2018
John Hitchcock, Adewale Sekoni

Nondeterminisic Sublinear Time Has Measure 0 in P

The measure hypothesis is a quantitative strengthening of the P $\neq$ NP conjecture which asserts that NP is a nonnegligible subset of EXP. Cai, Sivakumar, and Strauss (1997) showed that the analogue of this hypothesis in P is false. In particular, they showed that NTIME[$n^{1/11}$] has measure 0 in P. ... more >>>




ISSN 1433-8092 | Imprint