Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > SPARSITY:
Reports tagged with sparsity:
TR10-048 | 24th March 2010
David GarcĂ­a Soriano, Arie Matsliah, Sourav Chakraborty, Jop Briet

Monotonicity Testing and Shortest-Path Routing on the Cube

We study the problem of monotonicity testing over the hypercube. As
previously observed in several works, a positive answer to a natural question about routing
properties of the hypercube network would imply the existence of efficient
monotonicity testers. In particular, if any $\ell$ disjoint source-sink pairs
on the directed hypercube ... more >>>


TR17-192 | 15th December 2017
Krishnamoorthy Dinesh, Jayalal Sarma

Alternation, Sparsity and Sensitivity : Bounds and Exponential Gaps

Revisions: 1

The well-known Sensitivity Conjecture regarding combinatorial complexity measures on Boolean functions states that for any Boolean function $f:\{0,1\}^n \to \{0,1\}$, block sensitivity of $f$ is polynomially related to sensitivity of $f$ (denoted by $\mathbf{sens}(f)$). From the complexity theory side, the XOR Log-Rank Conjecture states that for any Boolean function, $f:\{0,1\}^n ... more >>>


TR20-042 | 31st March 2020
Pranav Bisht, Nitin Saxena

Poly-time blackbox identity testing for sum of log-variate constant-width ROABPs

Blackbox polynomial identity testing (PIT) affords 'extreme variable-bootstrapping' (Agrawal et al, STOC'18; PNAS'19; Guo et al, FOCS'19). This motivates us to study log-variate read-once oblivious algebraic branching programs (ROABP). We restrict width of ROABP to a constant and study the more general sum-of-ROABPs model. We give the first poly($s$)-time blackbox ... more >>>


TR24-049 | 7th March 2024
Karthik Gajulapalli, Zeyong Li, Ilya Volkovich

Oblivious Classes Revisited: Lower Bounds and Hierarchies

In this work we study oblivious complexity classes. Among our results:
1) For each $k \in \mathbb{N}$, we construct an explicit language $L_k \in O_2P$ that cannot be computed by circuits of size $n^k$.
2) We prove a hierarchy theorem for $O_2TIME$. In particular, for any function $t:\mathbb{N} \rightarrow \mathbb{N}$ ... more >>>




ISSN 1433-8092 | Imprint