Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > QUANTUM ALGORITHMS:
Reports tagged with quantum algorithms:
TR10-075 | 22nd April 2010
Ben Reichardt

Least span program witness size equals the general adversary lower bound on quantum query complexity

Span programs form a linear-algebraic model of computation, with span program "size" used in proving classical lower bounds. Quantum query complexity is a coherent generalization, for quantum algorithms, of classical decision-tree complexity. It is bounded below by a semi-definite program (SDP) known as the general adversary bound. We connect these ... more >>>


TR15-098 | 15th June 2015
Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, Juris Smotrovs

Separations in Query Complexity Based on Pointer Functions

Revisions: 2

In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized
query complexity for a total boolean function is given by the function $f$ on $n=2^k$ bits defined by a complete binary tree
of NAND gates of depth $k$, which achieves $R_0(f) = O(D(f)^{0.7537\ldots})$. ... more >>>


TR19-061 | 16th April 2019
Scott Aaronson, Daniel Grier, Luke Schaeffer

A Quantum Query Complexity Trichotomy for Regular Languages

We present a trichotomy theorem for the quantum query complexity of regular languages. Every regular language has quantum query complexity $\Theta(1)$, $\tilde{\Theta}(\sqrt n)$, or $\Theta(n)$. The extreme uniformity of regular languages prevents them from taking any other asymptotic complexity. This is in contrast to even the context-free languages, which we ... more >>>


TR20-185 | 1st December 2020
Srinivasan Arunachalam, Alex Grilo, Tom Gur, Igor Oliveira, Aarthi Sundaram

Quantum learning algorithms imply circuit lower bounds

Revisions: 1

We establish the first general connection between the design of quantum algorithms and circuit lower bounds. Specifically, let $\mathrm{C}$ be a class of polynomial-size concepts, and suppose that $\mathrm{C}$ can be PAC-learned with membership queries under the uniform distribution with error $1/2 - \gamma$ by a time $T$ quantum algorithm. ... more >>>


TR21-174 | 29th November 2021
Tom Gur, Min-Hsiu Hsieh, Sathyawageeswar Subramanian

Sublinear quantum algorithms for estimating von Neumann entropy

Entropy is a fundamental property of both classical and quantum systems, spanning myriad theoretical and practical applications in physics and computer science. We study the problem of obtaining estimates to within a multiplicative factor $\gamma>1$ of the Shannon entropy of probability distributions and the von Neumann entropy of mixed quantum ... more >>>


TR22-177 | 7th December 2022
Vahid Reza Asadi, Alexander Golovnev, Tom Gur, Igor Shinkar, Sathyawageeswar Subramanian

Quantum Worst-Case to Average-Case Reductions for All Linear Problems

We study the problem of designing worst-case to average-case reductions for quantum algorithms. For all linear problems, we provide an explicit and efficient transformation of quantum algorithms that are only correct on a small (even sub-constant) fraction of their inputs into ones that are correct on all inputs. This stands ... more >>>


TR23-108 | 21st July 2023
Andrej Bogdanov, Tsun-Ming Cheung, Krishnamoorthy Dinesh, John C.S. Lui

Classical simulation of one-query quantum distinguishers

We study the relative advantage of classical and quantum distinguishers of bounded query complexity over $n$-bit strings, focusing on the case of a single quantum query. A construction of Aaronson and Ambainis (STOC 2015) yields a pair of distributions that is $\epsilon$-distinguishable by a one-query quantum algorithm, but $O(\epsilon k/\sqrt{n})$-indistinguishable ... more >>>


TR23-189 | 28th November 2023
John Kallaugher, Ojas Parekh, Nadezhda Voronova

Exponential Quantum Space Advantage for Approximating Maximum Directed Cut in the Streaming Model

While the search for quantum advantage typically focuses on speedups in execution time, quantum algorithms also offer the potential for advantage in space complexity. Previous work has shown such advantages for data stream problems, in which elements arrive and must be processed sequentially without random access, but these have been ... more >>>




ISSN 1433-8092 | Imprint