The Exponential Time Hypothesis (ETH) says that deciding the satisfiability of $n$-variable 3-CNF formulas requires time $\exp(\Omega(n))$. We relax this hypothesis by introducing its counting version #ETH, namely that every algorithm that counts the satisfying assignments requires time $\exp(\Omega(n))$. We transfer the sparsification lemma for $d$-CNF formulas to the counting ... more >>>
We introduce and study a new model of interactive proofs: AM(k), or Arthur-Merlin with k non-communicating Merlins. Unlike with the better-known MIP, here the assumption is that each Merlin receives an independent random challenge from Arthur. One motivation for this model (which we explore in detail) comes from the close ... more >>>
The celebrated PPAD hardness result for finding an exact Nash equilibrium in a two-player game
initiated a quest for finding \emph{approximate} Nash equilibria efficiently, and is one of the major open questions in algorithmic game theory.
We study the computational complexity of finding an $\eps$-approximate Nash equilibrium with good social ... more >>>
In the Densest $k$-Subgraph problem, given an undirected graph $G$ and an integer $k$, the goal is to find a subgraph of $G$ on $k$ vertices that contains maximum number of edges. Even though the state-of-the-art algorithm for the problem achieves only $O(n^{1/4 + \varepsilon})$ approximation ratio (Bhaskara et al., ... more >>>
We consider relative error low rank approximation of tensors with respect to the Frobenius norm. Namely, given an order-$q$ tensor $A \in \mathbb{R}^{\prod_{i=1}^q n_i}$, output a rank-$k$ tensor $B$ for which $\|A-B\|_F^2 \leq (1+\epsilon) {\rm OPT}$, where ${\rm OPT} = \inf_{\textrm{rank-}k~A'} \|A-A'\|_F^2$. Despite much success on obtaining relative error low ... more >>>
Finite languages lie at the heart of literally every regular expression. Therefore, we investigate the approximation complexity of minimizing regular expressions without Kleene star, or, equivalently, regular expressions describing finite languages. On the side of approximation hardness, given such an expression of size~$s$, we prove that it is impossible to ... more >>>
The Parameterized Inapproximability Hypothesis (PIH) asserts that no fixed parameter tractable (FPT) algorithm can distinguish a satisfiable CSP instance, parameterized by the number of variables, from one where every assignment fails to satisfy an $\varepsilon$ fraction of constraints for some absolute constant $\varepsilon > 0$. PIH plays the role of ... more >>>
The Parameterized Inapproximability Hypothesis (PIH), which is an analog of the PCP theorem in parameterized complexity, asserts that, there is a constant $\varepsilon> 0$ such that for any computable function $f:\mathbb{N}\to\mathbb{N}$, no $f(k)\cdot n^{O(1)}$-time algorithm can, on input a $k$-variable CSP instance with domain size $n$, find an assignment satisfying ... more >>>