We show a non-inductive proof of the Schwartz-Zippel lemma. The lemma bounds the number of zeros of a multivariate low degree polynomial over a finite field.
more >>>The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multivariate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma to construct high-rate locally-decodable codes. However, the algorithmic results about these ... more >>>
The multiplicity Schwartz-Zippel lemma asserts that over a field, a low-degree polynomial cannot vanish with high multiplicity very often on a sufficiently large product set. Since its discovery in a work of Dvir, Kopparty, Saraf and Sudan [DKSS13], the lemma has found nu- merous applications in both math and computer ... more >>>
The Schwartz-Zippel Lemma states that if a low-degree multivariate polynomial with coefficients in a field is not zero everywhere in the field, then it has few roots on every finite subcube of the field. This fundamental fact about multivariate polynomials has found many applications in algorithms, complexity theory, coding theory, ... more >>>