Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > FREGE PROOFS:
Reports tagged with Frege proofs:
TR10-097 | 16th June 2010
Iddo Tzameret

Algebraic Proofs over Noncommutative Formulas

Revisions: 1

We study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege--yielding a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic analogue of Frege proofs, different from that given in Buss ... more >>>


TR17-037 | 25th February 2017
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla

Understanding Cutting Planes for QBFs

We define a cutting planes system CP+$\forall$red for quantified Boolean formulas (QBF) and analyse the proof-theoretic strength of this new calculus. While in the propositional case, Cutting Planes is of intermediate strength between resolution and Frege, our findings here show that the situation in QBF is slightly more complex: while ... more >>>


TR17-142 | 21st September 2017
Johan HÃ¥stad

On small-depth Frege proofs for Tseitin for grids

Revisions: 1

We prove that a small-depth Frege refutation of the Tseitin contradiction
on the grid requires subexponential size.
We conclude that polynomial size Frege refutations
of the Tseitin contradiction must use formulas of almost
logarithmic depth.

more >>>

TR18-117 | 23rd June 2018
Fedor Part, Iddo Tzameret

Resolution with Counting: Lower Bounds over Different Moduli

Revisions: 2

Resolution over linear equations (introduced in [RT08]) emerged recently as an important object of study. This refutation system, denoted Res(lin$_R$), operates with disjunction of linear equations over a ring $R$. On the one hand, the system captures a natural ``minimal'' extension of resolution in which efficient counting can be achieved; ... more >>>




ISSN 1433-8092 | Imprint