A PCP is a proof system for NP in which the proof can be checked by a probabilistic verifier. The verifier is only allowed to read a very small portion of the proof, and in return is allowed to err with some bounded probability. The probability that the verifier accepts ... more >>>
We show that high dimensional expanders imply derandomized direct product tests, with a number of subsets that is *linear* in the size of the universe.
Direct product tests belong to a family of tests called agreement tests that are important components in PCP constructions and include, for example, low degree ... more >>>
Agreement tests are a generalization of low degree tests that capture a local-to-global phenomenon, which forms the combinatorial backbone of most PCP constructions. In an agreement test, a function is given by an ensemble of local restrictions. The agreement test checks that the restrictions agree when they overlap, and the ... more >>>
We introduce a framework of layered subsets, and give a sufficient condition for when a set system supports an agreement test. Agreement testing is a certain type of property testing that generalizes PCP tests such as the plane vs. plane test.
Previous work has shown that high dimensional expansion ... more >>>
In this paper we study functions on the Boolean hypercube that have the property that after applying certain random restrictions, the restricted function is correlated to a linear function with non-negligible probability. If the given function is correlated with a linear function then this property clearly holds. Furthermore, the property ... more >>>
We solve the derandomized direct product testing question in the low acceptance regime, by constructing new high dimensional expanders that have no small connected covers. We show that our complexes have swap cocycle expansion, which allows us to deduce the agreement theorem by relying on previous work.
Derandomized direct product ... more >>>