Alexey Pospelov

We study the complexity of polynomial multiplication over arbitrary fields. We present a unified approach that generalizes all known asymptotically fastest algorithms for this problem. In particular, the well-known algorithm for multiplication of polynomials over fields supporting DFTs of large smooth orders, SchÃ¶nhage-Strassen's algorithm over arbitrary fields of characteristic different ... more >>>

Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, David Levit

Over finite fields $F_q$ containing a root of unity of smooth order $n$ (smoothness means $n$ is the product of small primes), the Fast Fourier Transform (FFT) leads to the fastest known algebraic algorithms for many basic polynomial operations, such as multiplication, division, interpolation and multi-point evaluation. These operations can ... more >>>