We investigate the complexity of the following computational problem:
Polynomial Entropy Approximation (PEA):
Given a low-degree polynomial mapping
$p : F^n\rightarrow F^m$, where $F$ is a finite field, approximate the output entropy
$H(p(U_n))$, where $U_n$ is the uniform distribution on $F^n$ and $H$ may be any of several entropy measures.