Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Sherali-Adams:
TR10-169 | 10th November 2010
Siavosh Benabbas, Konstantinos Georgiou, Avner Magen

The Sherali-Adams System Applied to Vertex Cover: Why Borsuk Graphs Fool Strong LPs and some Tight Integrality Gaps for SDPs

Revisions: 2

We study the performance of the Sherali-Adams system for VERTEX COVER on graphs with vector
chromatic number $2+\epsilon$. We are able to construct solutions for LPs derived by any number of Sherali-Adams tightenings by introducing a new tool to establish Local-Global Discrepancy. When restricted to
$O(1/ \epsilon)$ tightenings we show ... more >>>

TR14-118 | 9th September 2014
Albert Atserias, Massimo Lauria, Jakob Nordström

Narrow Proofs May Be Maximally Long

We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n^Omega(w). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n^O(w) is essentially tight. ... more >>>

TR21-182 | 30th December 2021
Ilario Bonacina, Maria Luisa Bonet

On the strength of Sherali-Adams and Nullstellensatz as propositional proof systems

The propositional proof system Sherali-Adams (SA) has polynomial-size proofs of the pigeonhole principle (PHP). Similarly, the Nullstellensatz (NS) proof system has polynomial size proofs of the bijective (i.e. both functional and onto) pigeonhole principle (ofPHP). We characterize the strength of these algebraic proof systems in terms of Boolean proof systems ... more >>>

ISSN 1433-8092 | Imprint