Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > EXPANDER CODES:
Reports tagged with expander codes:
TR10-171 | 11th November 2010
Michael Viderman

A Note on high-rate Locally Testable Codes with sublinear query complexity

Inspired by recent construction of high-rate locally correctable codes with sublinear query complexity due to
Kopparty, Saraf and Yekhanin (2010) we address the similar question for locally testable codes (LTCs).

In this note we show a construction of high-rate LTCs with sublinear query complexity.
More formally, we show that for ... more >>>


TR11-058 | 15th April 2011
Michael Viderman

Linear time decoding of regular expander codes

Revisions: 1

Sipser and Spielman (IEEE IT, 1996) showed that any $(c,d)$-regular expander code with expansion parameter $> \frac{3}{4}$ is decodable in \emph{linear time} from a constant fraction of errors. Feldman et al. (IEEE IT, 2007)
proved that expansion parameter $> \frac{2}{3} + \frac{1}{3c}$ is sufficient to correct a constant fraction of ... more >>>


TR19-122 | 13th September 2019
Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, Mary Wootters

LDPC Codes Achieve List-Decoding Capacity

Revisions: 3

We show that Gallager's ensemble of Low-Density Parity Check (LDPC) codes achieve list-decoding capacity. These are the first graph-based codes shown to have this property. Previously, the only codes known to achieve list-decoding capacity were completely random codes, random linear codes, and codes constructed by algebraic (rather than combinatorial) techniques. ... more >>>


TR20-013 | 17th February 2020
Noga Ron-Zewi, Mary Wootters, Gilles Z\'{e}mor

Linear-time Erasure List-decoding of Expander Codes

Revisions: 1

We give a linear-time erasure list-decoding algorithm for expander codes. More precisely, let $r > 0$ be any integer. Given an inner code $\cC_0$ of length $d$, and a $d$-regular bipartite expander graph $G$ with $n$ vertices on each side, we give an algorithm to list-decode the expander code $\cC ... more >>>


TR21-175 | 6th December 2021
Oded Goldreich

On the Locally Testable Code of Dinur et al. (2021)

Revisions: 1

This text provides a high-level description of the locally testable code constructed by Dinur, Evra, Livne, Lubotzky, and Mozes (ECCC, TR21-151).
In particular, the group theoretic aspects are abstracted as much as possible.

more >>>

TR23-110 | 25th July 2023
Gil Cohen, Tal Yankovitz

Asymptotically-Good RLCCs with $(\log{n})^{2+o(1)}$ Queries

Revisions: 1

Recently, Kumar and Mon reached a significant milestone by constructing asymptotically good relaxed locally correctable codes (RLCCs) with poly-logarithmic query complexity. Specifically, they constructed $n$-bit RLCCs with $O(\log^{69}n)$ queries. This significant advancement relies on a clever reduction to locally testable codes (LTCs), capitalizing on recent breakthrough works in LTCs.

With ... more >>>




ISSN 1433-8092 | Imprint