Loading jsMath...
Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > SYMMETRIC FUNCTION, FOURIER SPECTRUM, LEARNING JUNTAS:
Reports tagged with Symmetric function, Fourier Spectrum, Learning Juntas:
TR10-178 | 17th November 2010
Amir Shpilka, Avishay Tal

On the Minimal Fourier Degree of Symmetric Boolean Functions

In this paper we give a new upper bound on the minimal degree of a nonzero Fourier coefficient in any non-linear symmetric Boolean function.
Specifically, we prove that for every non-linear and symmetric f:\{0,1\}^{k} \to \{0,1\} there exists a set \emptyset\neq S\subset[k] such that |S|=O(\Gamma(k)+\sqrt{k}), and \hat{f}(S) \neq 0, where ... more >>>




ISSN 1433-8092 | Imprint