We prove the following strong hardness result for learning: Given a distribution of labeled examples from the hypercube such that there exists a monomial consistent with $(1-\epsilon)$ of the examples, it is $\mathrm{NP}$-hard to find a halfspace that is correct on $(1/2+\epsilon)$ of the examples, for arbitrary constants $\epsilon ... more >>>
We give a family of dictatorship tests with perfect completeness and low-soundness for 2-to-2 constraints. The associated 2-to-2 conjecture has been the basis of some previous inapproximability results with perfect completeness. However, evidence towards the conjecture in the form of integrality gaps even against weak semidefinite programs has been elusive. ... more >>>
We study the problem of computing the $p\rightarrow q$ norm of a matrix $A \in R^{m \times n}$, defined as \[ \|A\|_{p\rightarrow q} ~:=~ \max_{x \,\in\, R^n \setminus \{0\}} \frac{\|Ax\|_q}{\|x\|_p} \] This problem generalizes the spectral norm of a matrix ($p=q=2$) and the Grothendieck problem ($p=\infty$, $q=1$), and has been ... more >>>
Let $\Sigma$ be an alphabet and $\mu$ be a distribution on $\Sigma^k$ for some $k \geq 2$. Let $\alpha > 0$ be the minimum probability of a tuple in the support of $\mu$ (denoted by $supp(\mu)$). Here, the support of $\mu$ is the set of all tuples in $\Sigma^k$ that ... more >>>
We propose a framework of algorithm vs. hardness for all Max-CSPs and demonstrate it for a large class of predicates. This framework extends the work of Raghavendra [STOC, 2008], who showed a similar result for almost satisfiable Max-CSPs.
Our framework is based on a new hybrid approximation algorithm, which uses ... more >>>