In the paper, we introduce the concept of monotone rank, and using it as a powerful tool, we obtain several important and strong separation results in computational complexity.
\begin{itemize}
\item We show a super-exponential separation between monotone and non-monotone computation in the non-commutative model, and thus give the answer to ... more >>>
We prove that any total boolean function of rank $r$ can be computed by a deterministic communication protocol of complexity $O(\sqrt{r} \cdot \log(r))$. Equivalently, any graph whose adjacency matrix has rank $r$ has chromatic number at most $2^{O(\sqrt{r} \cdot \log(r))}$. This gives a nearly quadratic improvement in the dependence on ... more >>>
Let $f: \{0,1\}^n \to \{0, 1\}$ be a boolean function, and let $f_\land (x, y) = f(x \land y)$ denote the AND-function of $f$, where $x \land y$ denotes bit-wise AND. We study the deterministic communication complexity of $f_\land$ and show that, up to a $\log n$ factor, it is ... more >>>
In this paper, we introduce a measure of Boolean functions we call diameter, that captures the relationship between certificate complexity and several other measures of Boolean functions. Our measure can be viewed as a variation on alternating number, but while alternating number can be exponentially larger than certificate complexity, we ... more >>>
The log-rank conjecture, a longstanding problem in communication complexity, has persistently eluded resolution for decades. Consequently, some recent efforts have focused on potential approaches for establishing the conjecture in the special case of XOR functions, where the communication matrix is lifted from a boolean function, and the rank of ... more >>>
Given a non-negative real matrix $M$ of non-negative rank at least $r$, can we witness this fact by a small submatrix of $M$? While Moitra (SIAM J. Comput. 2013) proved that this cannot be achieved exactly, we show that such a witnessing is possible approximately: an $m\times n$ matrix always ... more >>>
Lifting theorems are used for transferring lower bounds between Boolean function complexity measures. Given a lower bound on a complexity measure $A$ for some function $f$, we compose $f$ with a carefully chosen gadget function $g$ and get essentially the same lower bound on a complexity measure $B$ for the ... more >>>