In the paper, we introduce the concept of monotone rank, and using it as a powerful tool, we obtain several important and strong separation results in computational complexity.
\begin{itemize}
\item We show a super-exponential separation between monotone and non-monotone computation in the non-commutative model, and thus give the answer to ... more >>>
We prove that any total boolean function of rank $r$ can be computed by a deterministic communication protocol of complexity $O(\sqrt{r} \cdot \log(r))$. Equivalently, any graph whose adjacency matrix has rank $r$ has chromatic number at most $2^{O(\sqrt{r} \cdot \log(r))}$. This gives a nearly quadratic improvement in the dependence on ... more >>>
Let $f: \{0,1\}^n \to \{0, 1\}$ be a boolean function, and let $f_\land (x, y) = f(x \land y)$ denote the AND-function of $f$, where $x \land y$ denotes bit-wise AND. We study the deterministic communication complexity of $f_\land$ and show that, up to a $\log n$ factor, it is ... more >>>
In this paper, we introduce a measure of Boolean functions we call diameter, that captures the relationship between certificate complexity and several other measures of Boolean functions. Our measure can be viewed as a variation on alternating number, but while alternating number can be exponentially larger than certificate complexity, we ... more >>>