Rahul Jain, Shengyu Zhang

We give a simpler proof, via query elimination, of a result due to O'Donnell, Saks, Schramm and Servedio, which shows a lower bound on the zero-error randomized query complexity of a function $f$ in terms of the maximum influence of any variable of $f$. Our lower bound also applies to ... more >>>

Anurag Anshu, Naresh Goud, Rahul Jain, Srijita Kundu, Priyanka Mukhopadhyay

We show that for any (partial) query function $f:\{0,1\}^n\rightarrow \{0,1\}$, the randomized communication complexity of $f$ composed with $\mathrm{Index}^n_m$ (with $m= \poly(n)$) is at least the randomized query complexity of $f$ times $\log n$. Here $\mathrm{Index}_m : [m] \times \{0,1\}^m \rightarrow \{0,1\}$ is defined as $\mathrm{Index}_m(x,y)= y_x$ (the $x$th bit ... more >>>

Andris Ambainis, Martins Kokainis, Krisjanis Prusis, Jevgenijs Vihrovs

We show that all known classical adversary lower bounds on randomized query complexity are equivalent for total functions, and are equal to the fractional block sensitivity $\text{fbs}(f)$. That includes the Kolmogorov complexity bound of Laplante and Magniez and the earlier relational adversary bound of Aaronson. For partial functions, we show ... more >>>

Alexander A. Sherstov, Andrey Storozhenko, Pei Wu

We prove that for every decision tree, the absolute values of the Fourier coefficients of given order $\ell\geq1$ sum to at most $c^{\ell}\sqrt{{d\choose\ell}(1+\log n)^{\ell-1}},$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant. This bound is essentially tight and settles a ... more >>>

Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, Swagato Sanyal, Nitin Saurabh

For any Boolean functions $f$ and $g$, the question whether $\text{R}(f\circ g) = \tilde{\Theta}(\text{R}(f) \cdot \text{R}(g))$, is known as the composition question for the randomized query complexity. Similarly, the composition question for the approximate degree asks whether $\widetilde{\text{deg}}(f\circ g) = \tilde{\Theta}(\widetilde{\text{deg}}(f)\cdot\widetilde{\text{deg}}(g))$. These questions are two of the most important and ... more >>>