Marius Zimand

We show that if DTIME[2^{O(n)}] is not included in DSPACE}[2^{o(n)}], then, for every set B in PSPACE, all strings x in B of length n can be represented by a string compressed(x) of length at most log (|B^{=n}|) + O(log n), such that a polynomial-time algorithm, given compressed(x), can distinguish ... more >>>

Eric Allender, Joshua Grochow, Cris Moore

We show that the Graph Automorphism problem is ZPP-reducible to MKTP, the problem of minimizing time-bounded Kolmogorov complexity. MKTP has previously been studied in connection with the Minimum Circuit Size Problem (MCSP) and is often viewed as essentially a different encoding of MCSP. All prior reductions to MCSP have applied ... more >>>

Eric Allender, Joshua Grochow, Dieter van Melkebeek, Cris Moore, Andrew Morgan

We study the computational power of deciding whether a given truth-table can be described by a circuit of a given size (the Minimum Circuit Size Problem, or MCSP for short), and of the variant denoted as MKTP where circuit size is replaced by a polynomially-related Kolmogorov measure. All prior reductions ... more >>>

Shuichi Hirahara

There are significant obstacles to establishing an equivalence between the worst-case and average-case hardness of NP: Several results suggest that black-box worst-case to average-case reductions are not likely to be used for reducing any worst-case problem outside coNP to a distributional NP problem.

This paper overcomes the barrier. We ... more >>>

Eric Allender, Rahul Ilango, Neekon Vafa

The Minimum Circuit Size Problem (MCSP) has been the focus of intense study recently; MCSP is hard for SZK under rather powerful reductions, and is provably not hard under “local” reductions computable in TIME($n^{0.49}$). The question of whether MCSP is NP-hard (or indeed, hard even for small subclasses of P) ... more >>>

Nicollas Sdroievski, Murilo Silva, André Vignatti

We show that the Hidden Subgroup Problem for black-box groups is in $\mathrm{BPP}^\mathrm{MKTP}$ (where $\mathrm{MKTP}$ is the Minimum $\mathrm{KT}$ Problem) using the techniques of Allender et al (2018). We also show that the problem is in $\mathrm{ZPP}^\mathrm{MKTP}$ provided that there is a \emph{pac overestimator} computable in $\mathrm{ZPP}^\mathrm{MKTP}$ for the logarithm ... more >>>

Shuichi Hirahara

A long-standing and central open question in the theory of average-case complexity is to base average-case hardness of NP on worst-case hardness of NP. A frontier question along this line is to prove that PH is hard on average if UP requires (sub-)exponential worst-case complexity. The difficulty of resolving this ... more >>>

Jan Krajicek

The working conjecture from K'04 that there is a proof complexity generator hard for all

proof systems can be equivalently formulated (for p-time generators) without a reference to proof complexity notions

as follows:

\begin{itemize}

\item There exist a p-time function $g$ extending each input by one bit such that its ...
more >>>

Rahul Ilango

The Minimum Circuit Size Problem (MCSP) asks, given the truth table of a Boolean function $f$ and an integer $s$, if there is a circuit computing $f$ of size at most $s.$ It has been an open question since Levin's seminal work on NP-completeness whether MCSP is NP-complete. This question ... more >>>

Shuichi Hirahara, Rahul Ilango, Ryan Williams

A compression problem is defined with respect to an efficient encoding function $f$; given a string $x$, our task is to find the shortest $y$ such that $f(y) = x$. The obvious brute-force algorithm for solving this compression task on $n$-bit strings runs in time $O(2^{\ell} \cdot t(n))$, where $\ell$ ... more >>>

Noam Mazor, Rafael Pass

The Perebor (Russian for “brute-force search”) conjectures, which date back to the 1950s and 1960s are some of the oldest conjectures in complexity theory. The conjectures are a stronger form of the NP ? = P conjecture (which they predate) and state that for “meta-complexity” problems, such as the Time-bounded ... more >>>