Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with public key encryption:
TR11-109 | 9th August 2011
Zvika Brakerski, Vinod Vaikuntanathan

Efficient Fully Homomorphic Encryption from (Standard) LWE

We present a fully homomorphic encryption scheme that is based solely on the (standard) learning with errors (LWE) assumption. Applying known results on LWE, the security of our scheme is based on the worst-case hardness of ``short vector problems'' on arbitrary lattices.

Our construction improves on previous works in two ... more >>>

TR15-094 | 10th June 2015
Eli Ben-Sasson, iddo Ben-Tov, Ivan Bjerre Damgard, Yuval Ishai, Noga Ron-Zewi

On Public Key Encryption from Noisy Codewords

Several well-known public key encryption schemes, including those of Alekhnovich (FOCS 2003), Regev (STOC 2005), and Gentry, Peikert and Vaikuntanathan (STOC 2008), rely on the conjectured intractability of inverting noisy linear encodings. These schemes are limited in that they either require the underlying field to grow with the security parameter, ... more >>>

TR22-011 | 25th January 2022
Andrej Bogdanov, Miguel Cueto Noval, Charlotte Hoffmann, Alon Rosen

Public-Key Encryption from Continuous LWE

The continuous learning with errors (CLWE) problem was recently introduced by Bruna
et al. (STOC 2021). They showed that its hardness implies infeasibility of learning Gaussian
mixture models, while its tractability implies efficient Discrete Gaussian Sampling and thus
asymptotic improvements in worst-case lattice algorithms. No reduction between CLWE and
LWE ... more >>>

TR23-060 | 17th April 2023
Sagnik Saha, Nikolaj Schwartzbach, Prashant Nalini Vasudevan

The Planted $k$-SUM Problem: Algorithms, Lower Bounds, Hardness Amplification, and Cryptography

Revisions: 1

In the average-case $k$-SUM problem, given $r$ integers chosen uniformly at random from $\{0,\ldots,M-1\}$, the objective is to find a set of $k$ numbers that sum to $0$ modulo $M$ (this set is called a ``solution''). In the related $k$-XOR problem, given $k$ uniformly random Boolean vectors of length $\log{M}$, ... more >>>

TR23-206 | 9th December 2023
Yilei Chen, Jiatu Li

Hardness of Range Avoidance and Remote Point for Restricted Circuits via Cryptography

Revisions: 1

A recent line of research has introduced a systematic approach to explore the complexity of explicit construction problems through the use of meta problems, namely, the range avoidance problem (abbrev. Avoid) and the remote point problem (abbrev. RPP). The upper and lower bounds for these meta problems provide a unified ... more >>>

ISSN 1433-8092 | Imprint