Pavel Hrubes, Amir Yehudayoff

The isoperimetric profile of a graph is a function that measures, for an integer $k$, the size of the smallest edge boundary over all sets of vertices of size $k$. We observe a connection between isoperimetric profiles and computational complexity. We illustrate this connection by an example from communication complexity, ... more >>>

Alexander A. Sherstov

The approximate degree of a Boolean function $f(x_{1},x_{2},\ldots,x_{n})$ is the minimum degree of a real polynomial that approximates $f$ pointwise within $1/3$. Upper bounds on approximate degree have a variety of applications in learning theory, differential privacy, and algorithm design in general. Nearly all known upper bounds on approximate degree ... more >>>

Agnes Schleitzer, Olaf Beyersdorff

To date, we know only a few handcrafted quantified Boolean formulas (QBFs) that are hard for central QBF resolution systems such as Q and QU, and only one specific QBF family to separate Q and QU.

Here we provide a general method to construct hard formulas for Q and ... more >>>

Yuval Filmus, Edward Hirsch, Artur Riazanov, Alexander Smal, Marc Vinyals

Hitting formulas have been studied in many different contexts at least since [Iwama 1989]. A hitting formula is a set of Boolean clauses such that any two of the clauses cannot be simultaneously falsified. [Peitl and Szeider 2022] conjectured that the family of unsatisfiable hitting formulas should contain the hardest ... more >>>