Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > NUMBER ON THE FOREHEAD MODEL:
Reports tagged with number on the forehead model:
TR11-155 | 22nd November 2011
Anil Ada, Arkadev Chattopadhyay, Omar Fawzi, Phuong Nguyen

The NOF Multiparty Communication Complexity of Composed Functions

We study the $k$-party `number on the forehead' communication complexity of composed functions $f \circ \vec{g}$, where $f:\{0,1\}^n \to \{\pm 1\}$, $\vec{g} = (g_1,\ldots,g_n)$, $g_i : \{0,1\}^k \to \{0,1\}$ and for $(x_1,\ldots,x_k) \in (\{0,1\}^n)^k$, $f \circ \vec{g}(x_1,\ldots,x_k) = f(\ldots,g_i(x_{1,i},\ldots,x_{k,i}), \ldots)$. When $\vec{g} = (g,g,\ldots,g)$ we denote $f \circ \vec{g}$ by ... more >>>


TR23-124 | 24th August 2023
Zander Kelley, Shachar Lovett, Raghu Meka

Explicit separations between randomized and deterministic Number-on-Forehead communication

Revisions: 1

We study the power of randomness in the Number-on-Forehead (NOF) model in communication complexity. We construct an explicit 3-player function $f:[N]^3 \to \{0,1\}$, such that: (i) there exist a randomized NOF protocol computing it that sends a constant number of bits; but (ii) any deterministic or nondeterministic NOF protocol computing ... more >>>


TR25-073 | 14th June 2025
Guangxu Yang, Jiapeng Zhang

Deterministic Lifting Theorems for One-Way Number-on-Forehead Communication

Lifting theorems are one of the most powerful tools for proving communication complexity lower bounds, with numerous downstream applications in proof complexity, monotone circuit lower bounds, data structures, and combinatorial optimization. However, to the best of our knowledge, prior lifting theorems have primarily focused on the two-party communication.

In this ... more >>>




ISSN 1433-8092 | Imprint