Nikolay Vereshchagin

Assume that $NP\ne RP$. Gutfreund, Shaltiel, and Ta-Shma in [Computational Complexity 16(4):412-441 (2007)] have proved that for every randomized polynomial time decision algorithm $D$ for SAT there is a polynomial time samplable distribution such that $D$ errs with probability at least $1/6-\epsilon$ on a random formula chosen with respect to ... more >>>

Marshall Ball, Dana Dachman-Soled, Julian Loss

We present the first truly explicit constructions of \emph{non-malleable codes} against tampering by bounded polynomial size circuits. These objects imply unproven circuit lower bounds and our construction is secure provided E requires exponential size nondeterministic circuits, an assumption from the derandomization literature.

Prior works on NMC ...
more >>>