We study the problem of matrix Lie algebra conjugacy. Lie algebras arise centrally in areas as diverse as differential equations, particle physics, group theory, and the Mulmuley--Sohoni Geometric Complexity Theory program. A matrix Lie algebra is a set $\mathcal{L}$ of matrices such that $A,B \in \mathcal{L}$ implies$AB - BA \in ... more >>>
An algebraic branching program (ABP) A can be modelled as a product expression $X_1\cdot X_2\cdot \dots \cdot X_d$, where $X_1$ and $X_d$ are $1 \times w$ and $w \times 1$ matrices respectively, and every other $X_k$ is a $w \times w$ matrix; the entries of these matrices are linear forms ... more >>>