Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with p-adic:
TR12-014 | 20th February 2012
Johannes Mittmann, Nitin Saxena, Peter Scheiblechner

Algebraic Independence in Positive Characteristic -- A p-Adic Calculus

A set of multivariate polynomials, over a field of zero or large characteristic, can be tested for algebraic independence by the well-known Jacobian criterion. For fields of other characteristic $p>0$, there is no analogous characterization known. In this paper we give the first such criterion. Essentially, it boils down to ... more >>>

TR19-008 | 20th January 2019
Ashish Dwivedi, Rajat Mittal, Nitin Saxena

Efficiently factoring polynomials modulo $p^4$

Polynomial factoring has famous practical algorithms over fields-- finite, rational \& $p$-adic. However, modulo prime powers it gets hard as there is non-unique factorization and a combinatorial blowup ensues. For example, $x^2+p \bmod p^2$ is irreducible, but $x^2+px \bmod p^2$ has exponentially many factors! We present the first randomized poly($\deg ... more >>>

ISSN 1433-8092 | Imprint