We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e.~$\mathsf{AC^0}$ tampering functions), our codes have codeword length $n = k^{1+o(1)}$ for a $k$-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay ... more >>>
We study Frege proofs for the one-to-one graph Pigeon Hole Principle
defined on the $n\times n$ grid where $n$ is odd.
We are interested in the case where each formula
in the proof is a depth $d$ formula in the basis given by
$\land$, $\lor$, and $\neg$. We prove that ...
more >>>
We initiate the study of generalized $AC^0$ circuits comprised of arbitrary unbounded fan-in gates which only need to be constant over inputs of Hamming weight $\ge k$ (up to negations of the input bits), which we denote $GC^0(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ ... more >>>
Kumar (CCC, 2023) used a novel switching lemma to prove exponential-size lower bounds for a circuit class $GC^0$ that not only contains $AC^0$ but can---with a single gate---compute functions that require exponential-size $TC^0$ circuits. Their main result was that switching-lemma lower bounds for $AC^0$ lift to $GC^0$ with no loss ... more >>>