Probabilistically-Checkable Proofs (PCPs) form the algorithmic core that enables succinct verification of long proofs/computations in many cryptographic constructions, such as succinct arguments and proof-carrying data.
Despite the wonderful asymptotic savings they bring, PCPs are also the infamous computational bottleneck preventing these cryptographic constructions from being used in practice. This reflects ... more >>>
A Probabilistically Checkable Proof of Proximity (PCPP) for a linear code $C$, enables to determine very efficiently if a long input $x$, given as an oracle, belongs to $C$ or is far from $C$.
PCPPs are often a central component of constructions of Probabilistically Checkable Proofs (PCP)s [Babai et al. ...
more >>>
Motivated by the quest for scalable and succinct zero knowledge arguments, we revisit worst-case-to-average-case reductions for linear spaces, raised by [Rothblum, Vadhan, Wigderson, STOC 2013]. The previous state of the art by [Ben-Sasson, Kopparty, Saraf, CCC 2018] showed that if some member of an affine space $U$ is $\delta$-far in ... more >>>
We consider the proximity testing problem for error-correcting codes which consist in evaluations of multivariate polynomials either of bounded individual degree or bounded total degree. Namely, given an
oracle function $f : L^m \rightarrow \mathbb F_q$, where $L\subset \mathbb F_q$, a verifier distinguishes whether $f$ is the evaluation of a ...
more >>>